M1. (a)	The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system) ✓		е
		Do not accept 'force' in place of 'torque'	1
	(b)	I is the sum of the <i>m r</i> ² products for point masses <i>m</i> at radius <i>r</i> ✓ Or WTTE Not <i>m</i> is the mass and <i>r</i> the radius – must refer to point or small masses or distribution of mass	
		OR	
		$\sum m r^2$ with m and r defined	
		OR	
		\emph{I} is a measure of the mass and the way the mass is distributed about an axis	1
		More of the satellite's mass is at greater radius ✓	1
		(Small change in r) gives large change in r^2 , hence large change in I	
		OR even though m of panels is small, much of m is at a greater radius and radius is squared \checkmark	
		For 2 [™] mark must refer to effect of r ^o .	1
	(c)	Angular momentum = 110 × 5.2 = 572 ✓	1
		N m s OR kg m² s⁻¹ ✓ accept kg m² rad s⁻¹	1

(d) (Use of conservation of ang momtm) 572 = 230 × ω_2 \checkmark 1 $\omega_2 = 572 / 230 = 2.49 \text{ rad s}^{-1} \checkmark$ 1 3.5 $(2\pi \times 0.088) = 6.3 \text{ rev}$ **M2.**(a) $6.3 \times 2\pi = 39.8 \text{ rad or } 40 \text{ rad } \checkmark$ OR 3.5 0.088 = 39.8 or 40 rad ✓ If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion 1 (b) $\omega = v/r = 2.2/0.088 = 25 \text{ rad s}^{-1} \checkmark$ 1 (c) (i) $E = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 + mgh$ $= (0.5 \times 7.4 \times 25^{2})$ $+ (0.5 \times 85 \times 2.2^{2})$ $+(85 \times 9.81 \times 3.5)$ **=** 2310 **✓** + 206 + 2920 (= 5440 J)or 5400 J) CE from 1b $\frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 = 2310 + 210 = 2520 J$ $\frac{1}{2} I \omega^2 + mgh = 2310 + 2920 = 5230 J$ $\frac{1}{2}mv^2 + mgh = 210 + 2920 = 3130 J$ Each of these is worth 2 marks 3 (ii) Work done against friction = $T\theta$ $= 5.2 \times 40 = 210$ J Total work done = **W** = 5400 + 210 = 5600J ✓ 2 sig fig ✓

[8]

Page 3

3

(d) Time of travel = distance / average speed = 3.5 / 1.1 = 3.2s \checkmark $\frac{5600}{}$

$$P_{\text{ave}} = 3.2 = 1750 \text{ W}$$

$$P_{\text{max}} = P_{\text{ave}} \times 2 = 3500 \text{ W}$$
 \checkmark

OR accelerating torque =
$$T = W/\theta$$

= 5600 / 40 = 140 N m \checkmark
P = $T \omega_{max}$ = 140× 25 = 3500 W \checkmark
CE from ii
1780 W if 5650 J used

[10]

M3.(a) Use of $I = \Sigma mr^2$ or expressed in words \checkmark

With legs close to chest, more mass at smaller *r*, so *l* smaller ✓

2

(b) (i) Angular momentum is conserved / must remain constant \mathbf{OR} no external torque acts $\sqrt{}$

WTTE

as *I* decreases, ω increases and vice versa to maintain *I* ω constant \checkmark OR as *I* varies, ω must vary to maintain *I* ω constant

2

(ii) (Angular velocity increases initially then decreases (as he straightens up to enter the water)).

No mark for just ang. vel starts low then increases then decreases, i.e. for describing ω only at positions 1,2 and 3.

With one detail point e.g. 🗸

• Angular velocity when entering water is greater than at time t = 0 s.

- Angular velocity increases, decreases, increases, decreases
- Maximum angular velocity at t = 0.4 s
- · Greatest rate of change of ang. vel. is near the start
- · Angular velocity will vary as inverse of M of I graph

1

(c) angular. momentum = 10.9 × 4.4 = 48 (N m s) ✓

 $(\omega_{\text{\tiny max}}$ occurs at minimum I) Allow 6.3 to 6.5. If out of tolerance e.g. 6.2 give AE for final answer

minimum $I = 6.4 \text{ kg m}^2 \text{ (at } 0.4 \text{ s)}$

 $6.4 \times \omega_{\text{max}} = 48$ leading to

 ω_{max} = 7.5 rad s⁻¹ \checkmark

(Total 8 marks)