M1.(a) The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system)

Do not accept 'force' in place of 'torque'
(b) $\quad I$ is the sum of the $m r^{2}$ products for point masses m at radius $r \checkmark$

Or WTTE
Not m is the mass and r the radius - must refer to point or small masses or distribution of mass

OR
$\Sigma m r^{2}$ with m and r defined
OR
I is a measure of the mass and the way the mass is distributed about an axis

More of the satellite's mass is at greater radius
(Small change in r) gives large change in r^{2}, hence large change in /
OR even though m of panels is small, much of m is at a greater radius and radius is squared \checkmark

For $2^{\text {nd }}$ mark must refer to effect of r^{2}.
(c) Angular momentum $=110 \times 5.2=572 \checkmark$

```
N m s OR kg m}\mp@subsup{}{}{2}\mp@subsup{\textrm{s}}{}{-1
    accept
    kg m}\mp@subsup{m}{}{2}\mathrm{ rad s}\mp@subsup{}{}{-1
```

(d) (Use of conservation of ang momtm) $572=230 \times \omega_{2}$

$$
\omega_{2}=572 / 230=2.49 \mathrm{rad} \mathrm{~s}^{-1}
$$

M2.(a) $\frac{3.5}{(2 \pi \times 0.088)}=6.3 \mathrm{rev}$
$6.3 \times 2 \pi=39.8 \mathrm{rad}$ or 40 rad

OR
3.5

$\overline{0.088}=39.8$ or $40 \mathrm{rad} \checkmark$
If correct working shown with answer 40 rad give the mark Accept altemative route using equations of motion
(b) $\quad \omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
(c) (i) $E=1 / 2 / \omega^{2}+1 / 2 m v^{2}+m g h$

$$
=\left(0.5 \times 7.4 \times 25^{2}\right)
$$

$$
+\left(0.5 \times 85 \times 2.2^{2}\right)
$$

$$
+(85 \times 9.81 \times 3.5)
$$

$=2310 \mathrm{~J}$
$+206 \checkmark$
$+2920 \quad \checkmark$ ($=5440 \mathrm{~J}$ or 5400 J)

CE from $1 b$
$1 / 2 / \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J}$
$1 / 2 / \omega^{2}+m g h=2310+2920=5230 \mathrm{~J}$
$1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J}$
Each of these is worth 2 marks
(ii) Work done against friction $=T \theta$
$=5.2 \times 40=210 \mathrm{~J} \checkmark$
Total work done $=\boldsymbol{W}=5400+210$
$=5600 \mathrm{~J} \checkmark 2$ sig fig
Page 3

CE if used their answer to i rather than 5400J
Accept 5700 J (using 5440 J)
Sig fig mark is an independent mark
(d) Time of travel $=$ distance $/$ average speed $=3.5 / 1.1=3.2 \mathrm{~s} \checkmark$ 5600

$$
P_{\mathrm{ave}}=3.2=1750 \mathrm{~W}
$$

$$
P_{\max }=P_{\text {ave }} \times 2=3500 \mathrm{~W} \checkmark
$$

OR accelerating torque $=T=W / \theta$
$=5600 / 40=140 \mathrm{~N} \mathrm{~m}$ $\mathrm{P}=T \omega_{\text {max }}=140 \times 25=3500 \mathrm{~W}$

CE from ii
1780 W if 5650 J used
(b) (i) Angular momentum is conserved / must remain constant OR no external torque acts $\sqrt{ }$

WTTE
as / decreases, ω increases and vice versa to maintain / ω constant OR as / varies, ω must vary to maintain I ω constant
(ii) (Angular velocity increases initially then decreases (as he straightens up to enter the water)).

No mark for just ang. vel starts low then increases then decreases, i.e. for describing ω only at positions 1,2 and 3.

With one detail point e.g.

- Angular velocity when entering water is greater than at time $t=0$
s.
- Angular velocity increases, decreases, increases, decreases
- Maximum angular velocity at $t=0.4 \mathrm{~s}$
- Greatest rate of change of ang. vel. is near the start
- Angular velocity will vary as inverse of M of I graph
(c) angular. momentum $=10.9 \times 4.4=48(\mathrm{~N} \mathrm{~m} \mathrm{~s})$
($\omega_{\text {max }}$ occurs at minimum /)
Allow 6.3 to 6.5. If out of tolerance e.g. 6.2 give $A E$ for final answer

$$
\begin{aligned}
& \text { minimum } I=6.4 \mathrm{~kg} \mathrm{~m}^{2}(\text { at } 0.4 \mathrm{~s}) \checkmark \\
& \qquad 6.4 \times \omega_{\text {max }}=48 \text { leading to } \\
& \omega_{\text {max }}=7.5 \mathrm{rad} \mathrm{~s}^{-1} \checkmark
\end{aligned}
$$

